

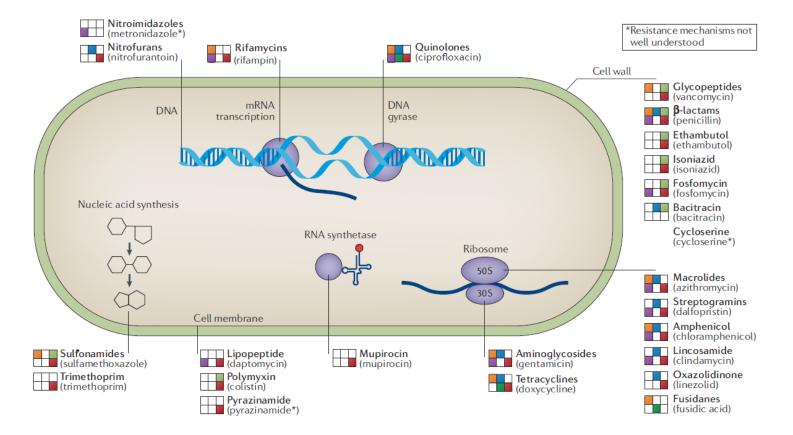
Demystifying Series: AMR Detection Using NGS

Joel R. Sevinsky, Ph.D. WY PHL AMD Training Lead MA DPH AMD Bioinformatics Resource 26 February 2020

Demystifying Series Objectives:

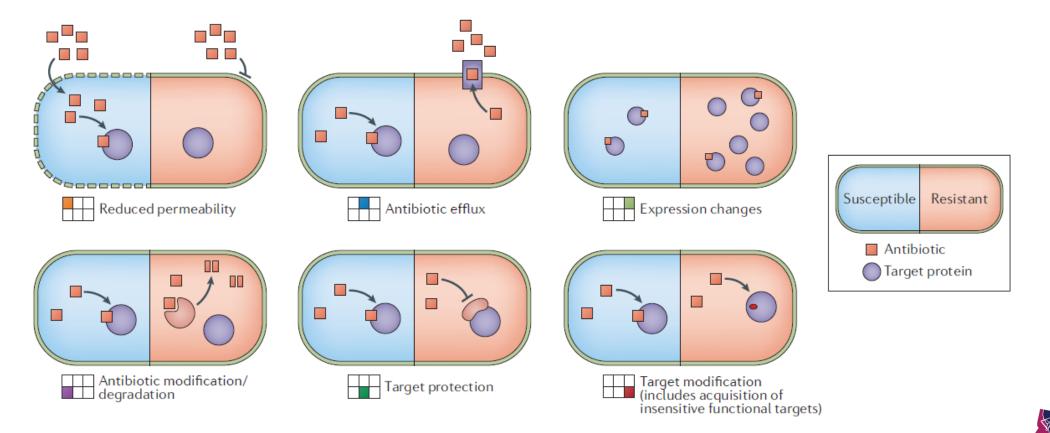
- Discuss a specific application of NGS data
 - Often the application is constantly evolving/improving
- Create more interactive content than static content
 - Google sheets, websites, Tableau views
- Record sessions for review
 - Unlisted youtube content available by link on www.statph.org
- Provide slides and materials on <u>www.staphb.org</u> as a resource
 - Free to download slides as pdf file
- Since it is not possible to cover all aspects of a proposed topic in a single webinar, these webinars serve as a beginning to your investigation and education on the topic.
- Encourage additional discussions on Slack (contact Noah Hull, Kelly Oakeson, Erin Young, or Joel Sevinsky to be connected).

Outline for today's webinar

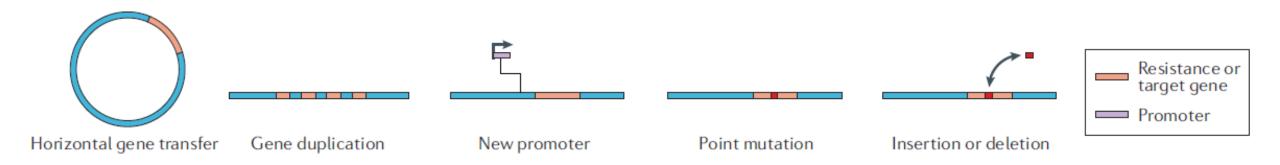

- Brief background on antimicrobial resistance (AMR)
- How genotype (NGS data) can help predict phenotype (resistance)
- Two popular algorithms for AMR detection
- Mutational resistance

• Disclaimer: I borrow extensively from other resources, including journal articles and online resource. These are referenced in the slides and used for educational purposes only. All references can be found in the Paperpile library (https://paperpile.com/shared/BbQJT2).

This webinar will be recorded and will be available at http://www.staphb.org/training/amr


Antibiotic Targets in Bacterial Cells

Boolchandani, M., D'Souza, A.W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20, 356–370 (2019). https://doi.org/10.1038/s41576-019-0108-4


Mechanisms of Antibiotic Resistance

Boolchandani, M., D'Souza, A.W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20, 356–370 (2019). https://doi.org/10.1038/s41576-019-0108-4

Genetic Determinants of Resistance

Boolchandani, M., D'Souza, A.W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20, 356–370 (2019). https://doi.org/10.1038/s41576-019-0108-4

Big Picture of AMR Detection Using NGS

- Generally speaking, detection requires well curated databases of AMR genes or mutations.
 - There are many different databases, most general, some species specific.
 - Most of these genetic determinants have been correlated with phenotype and/or experimentally determined.
- There are different tools available for searching these databases.
 - Tools vary on how they search the databases, and sometimes are part of the database implementation.
 - Input: contigs vs reads, nucleotide vs protein
 - Algorithm: Blast, k-mer, HMM, and others

Databases

Database	Organisms	Description	Link	Status	Reference
CARD	General	 Ontology-based database that provides comprehensive information of AR genes and their resistance mechanisms Currently contains >2,200 protein homologues and includes a curated set of resistance-conferring chromosomal mutations in protein-coding genes 	https://card.mcmaster.ca/	Active; launched in 2013; updated monthly	Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D568–D573 (2017).
ResFinder	General	Collation of AR genes involved in HGT events	https://cge.cbs.dtu.dk/services/ResFinder/	Active; started in 2012; update regularly ; last update in February 2019	Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012). This article describes Resfinder, a widely used tool for the identification of acquired antimicrobial resistance genes in whole-genome data.
ResFinderFG	General	Collection of resistance gene variants identified in multiple functional metagenomics studies	https://cge.cbs.dtu.dk/services/ResFinderF G/	Active; last update in November 2016	Munk, P. et al. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat. Microbiol. 3, 898–908 (2018).
Resfams	General	A profile HMM-based curated database confirmed for AR function	http://www.dantaslab.org/resfams/	Active; last update in January 2015	Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 9, 207–216 (2015).
ARDB	General	 First centralized resource of AR gene information Manually curated; contains >4,500 AR sequences 	https://ardb.cbcb.umd.edu/	Archived; last updated in 2009	Liu, B. & Pop, M. ARDB—antibiotic resistance genes database. Nucleic Acids Res 37, D443–D447 (2009).
MEGARes	General	 Collation of multiple databases (CARD, ARG-ANNOT and ResFinder) to avoid redundancy between entries For high-throughput screening and statistical analysis 	https://megares.meglab.org/	Active; last update in December 2016	Lakin, S. M. et al. MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 45, D574–D580 (2017).
NDARO	General	- Collated and curated data from multiple databases (CARD, Lahey , Pasteur Institute β -Lactamases and ResFinder) - Contains 4,500 AR sequences	https://www.ncbi.nlm.nih.gov/bioproject/PRJ NA313047	Active; started in 2016	
ADC ANNOT	Ganaral	Denositary of N1 800 AD sequences collated from scientific literature	Not available	Archived: last undate in	Gunta, S.K. et al. ARG-ANNOT a new bioinformatic tool to discover

.....

Go to <u>http://www.staphb.org/training/amr/</u>

Boolchandani, M., D'Souza, A.W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20, 356–370 (2019). https://doi.org/10.1038/s41576-019-0108-4

Tools

Name	Input	Description	Accessibility	Year	Link	Status	Reference
ResFinder	Assembly/Reads	Tool for detecting acquired AR genes from sequenced or partially sequenced bacterial isolates	Web and/or standalone	2012	https://cge.cbs.dtu.dk/services/ResFinder [Active	Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother, 67, 2640–2644 (2012). This article describes Resfinder, a widely used tool for the identification of acquired antimicrobial resistance genes in whole-genome data.
ARG-ANNOT	Assembly	Tool for pairwise comparison of query sequence with ARG-ANNOT database	Standalone	2014	NA	Archived	Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220 (2014).
RGI	Assembly	 Pairwise comparison of query sequence with the CARD Uses curated AR detection models to predict intrinsic resistance genes, dedicated resistance genes and acquired resistance from mutations in drug targets 	Web and/or standalone	2015	https://card.mcmaster.ca/analyze/rgi	Active	Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).
ARGs-OAP (v2)	Assembly	 Online analysis pipeline for AR genes Detection from metagenomic data using an integrated structured database of AR sequences 	Web and/or standalone	2016	https://galaxyproject.org/use/args-oap/	Active	Yin, X. et al. ARGs-OAP v2.0 with an expanded SARG database and hidden Markov models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 34, 2263–2270 (2018).
ARIBA	Reads	Tool for rapid AR genotyping directly from sequencing reads using curated public databases	Standalone	2017	<u>https://github.com/sanger-pathogens/ari</u> <u>ba</u>	Active	Hunt, M. et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb. Genom. 3, e000131 (2017).
PointFinder	Assembly	Web tool for WGS-based detection of AR associated with chromosomal point mutations in bacterial pathogens	Web and/or standalone	2018	https://cge.cbs.dtu.dk/services/ResFinder /	Active	Zankari, E. et al. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 72, 2764–2768 (2017).
NCBI-AMRFinderPlus	Assembly	Tool for identification of acquired resistance genes using NCBI's curated AR database and curated collection of HMMs	Standalone	2018	https://www.ncbi.nlm.nih.gov/pathogens/ antimicrobial-resistance/AMRFinder/	Active	
CDCTO	Doade	Tool for direct mapping of roads to curated AD databases	Chandalono	2014	https://aithub.com/katholt/crst2	Activo	Inouve M et al SRST2: rapid genomic surveillance

.......

Go to <u>http://www.staphb.org/training/amr/</u>

Boolchandani, M., D'Souza, A.W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20, 356–370 (2019). https://doi.org/10.1038/s41576-019-0108-4

ABRicate (Blast-based nucleotide contig searching)

- ABRicate website
 - <u>https://github.com/tseemann/abricate</u>
- ResFinder Databases
 - <u>https://bitbucket.org/genomicepidemiology/resfinder_db/src/master/</u>

ABRicate - Results

• ABRicate will output one file for each database searched:

- rw-rr	1	ubuntu	ubuntu	2658	Dec	23	03:53	SRR9988086 argannot.tab
- rw-rr	1	ubuntu	ubuntu	25407	Dec	23	03:57	SRR9988086 card.tab
- rw-rr	1	ubuntu	ubuntu	295	Dec	23	04:00	SRR9988086 ecoh.tab
- rw-rr	1	ubuntu	ubuntu	15364	Dec	23	04:03	SRR9988086_ecoli_vf.tab
- rw-rr	1	ubuntu	ubuntu	1223	Dec	23	04:09	SRR9988086 ncbi.tab
- rw-rr	1	ubuntu	ubuntu	488	Dec	23	04:14	SRR9988086_plasmidfinder.tab
- rw-rr	1	ubuntu	ubuntu	1511	Dec	23	04:17	SRR9988086_resfinder.tab
- rw - r r	1	ubuntu	ubuntu	42044	Dec	23	04:21	SRR9988086_vfdb.tab

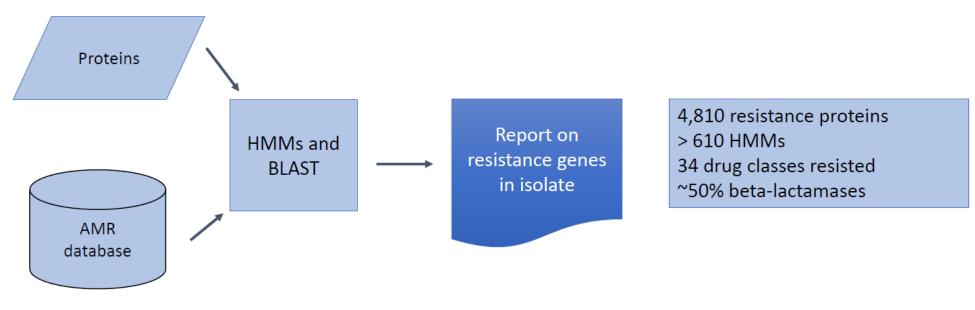
ABRicate - Results

• Each file is a tab delimited file with the Blast results:

(base) ubuntu@ip-172-31-7-175:~/workspace/fourth test/abricate\$ more SRR9988086 resfinder.tab #FILE SEQUENCE START END STRAND GENE COVERAGE COVERAGE MAP GAPS %COVERAGE %I DENTITY DATABASE ACCESSION PRODUCT RESISTANCE /home/ubuntu/workspace/fourth test/shovill/SRR9988086/SRR9988086.fa 569884 + contig00001 569447 aa c(6')-Iaa 1 1-438/438 ========================0/0 100.00 100.00 resfinder NC 003197 aac(6')-Iaa A mikacin; Tobramycin /home/ubuntu/workspace/fourth test/shovill/SRR9988086/SRR9988086.fa contia00013 64484 65702 + md f(A) 1 1-1219/1233 ========================0/0 98.86 79.41 resfinder Y08743 mdf (A) /home/ubuntu/workspace/fourth test/shovill/SRR9988086/SRR9988086.fa contig00029 10268 11473 + te AF326777 tet(B) t(B) 2 1-1206/1206 ============= 0/0 100.00 100.00 resfinder Doxycycli ne;Tetracycline;Minocycline /home/ubuntu/workspace/fourth test/shovill/SRR9988086/SRR9988086.fa contig00034 136 972 ap h(6)-Id 1 1-837/837 ========================0/0 100.00 100.00 resfinder M28829 aph (6)-Id Streptomycin /home/ubuntu/workspace/fourth test/shovill/SRR9988086/SRR9988086.fa 972 contig00034 1775 ap h(3'')-Ib 5 1-804/804 =================== 0/0 100.00 100.00 resfinder AF321551 aph(3'')-Ib S treptomycin contig00034 /home/ubuntu/workspace/fourth test/shovill/SRR9988086/SRR9988086.fa 1836 2651 su 12 3 1-816/816 =======================0/0 100.00 100.00 resfinder H0840942 sul Sulfamethoxazole 2 /home/ubuntu/workspace/fourth test/shovill/SRR9988086/SRR9988086.fa contig00043 649 1509 bl =========================0/0 AY458016 blaTEM-1B aTEM-1B 1 1-861/861 100.00 100.00 resfinder A moxicillin; Ampicillin; Cephalothin; Piperacillin; Ticarcillin

ABRicate - Results

- Let's look at several results files in formatted view:
 - Google Sheets View

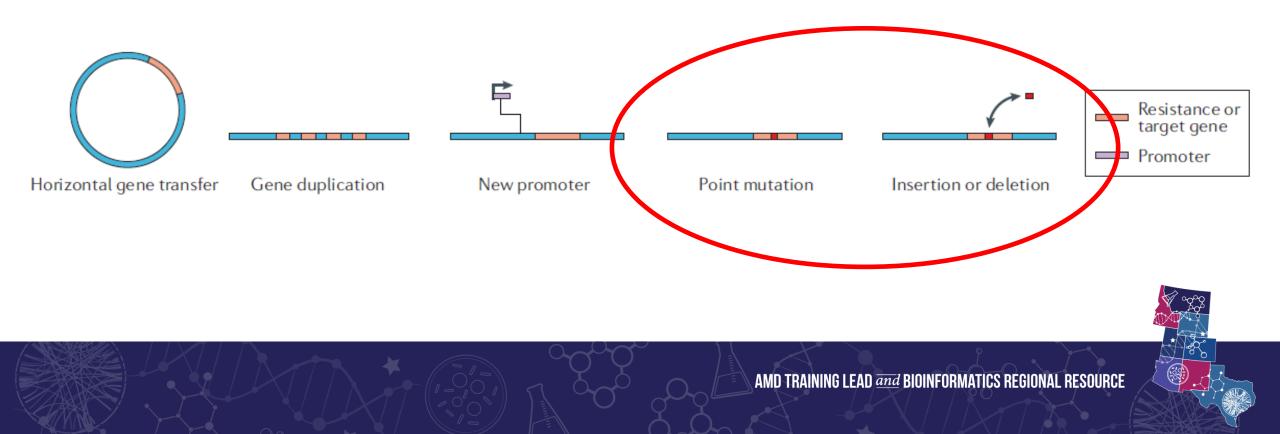


AMRFinderPlus

William Kimke National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health 17514 6-7 May 2019 Chicago, IL

NCBI Pathogen Detection Pipeline Background and live demo

AMRFinder Uses a Curated Database, HMMs and BLAST to Identify AMR genes


AMRFinderPlus - Results

• <u>https://www.ncbi.nlm.nih.gov/pathogens/isolates/#/search/SRR9988086</u>

Mutational Resistance

- Best example is *Mycobacterium tuberculosis*
 - Drug resistance is predominantly mutational.

Cite this article as: Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting th association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir 2017; 50: 1701354 [https://doi.org/10.1183/13993003.01354-2017].

TB Mutational Resistance

		Collected data					
	Loci of interest	Total isolates	Isolation time frame years	Countries represented	Screened	Included	
Rifampicin (R)	rpoB	13424	1999-2014	37	459	95	
Isoniazid (H)	katG	11847	1992-2014	42	650	127	
	inhA-mabA	9407					
	furA	361					
	mshA	288					
Ethionamide and	inhA-mabA	346					
prothionamide	ethA	181					
(ETO/PTO)	mshA	117					
Ofloxacin (OFX)	gyrA	5911	1991-2013	36	243	75	
	gyrB	3078					
Moxifloxacin (MFX)	gyrA	1019					
	gyrB	735					
Levofloxacin (LFX)	gyrA	449					
	gyrB	218					
Pyrazinamide (Z)	pncA	4949	1990-2014	36	378	81	
Streptomycin (S)	rpsL	3263	1985-2013	43	423	104	
	tap	0					
	rrs	2598					
	whiB7	0					
	gidB	812					
Amikacin (AM)	rrs	2105					
Capreomycin (CM)	rrs	2533					
	tlyA	1854					
Kanamycin (KM)	rrs	1727					
-	eis	2029					
	whiB7	56					

TABLE 1 Overview of the data included in the study

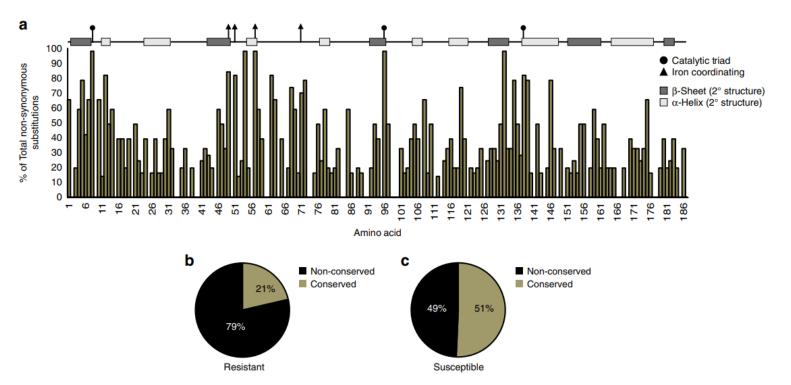
Data are presented as n. Inclusion and exclusion criteria for individual studies are reported in online supplementary material 2.

TB Mutational Resistance

Drug (phenotypic testing)	Gene	High-confidence mutations	Moderate-confidence mutations	Minimal-confidence mutations	No association wi resistance
First-line					
Rifampicin (R)	rpoB	F505V+D516Y, S512T, O513H+L533P, O513-F514ins, Q513K, Q513L, Q513P , F516dupl, M515I+D516Y, D516A , D516F, D5166, D5166+L533P, D516ins, D516N, D516V, Del N518, S522Q, H526C, H526D, H526F, H526G, H526L, H526R, H526Y S531F, S531L, S531U, S531V, D526E	D516Y, S522L, H526P, L533P	L511P, H526N, I572F	
Isoniazid (H)	inhA-mabA	g-102a ^{#.1}	c-15t		g-102a ^{#.1} , t-80g, <i>g-</i> T4I
	katG furA mshA	S315I, S315N, S315T, pooled frameshifts and premature stop codons	A187V ^{#.1}		A110V, R463L , L49 L68F N111S
Second-line (group A)					
Moxifloxacin (MFX)	gyrA	G88C, A90V, S91P, D94A, D94G, D94N, D94Y			E21Q, S95T , G247 G668D, V712L
Ofloxacin (OFX)/ levofloxacin (LFX)	gyrA	G88A, G88C, S91P, A90V, D94A, D94G, D94H, D94N, D94Y	D89N		E21Q, T80A , S95 G247S, G668D, V7
	gyrB	E459K, A504V			
Second-line (group B)					
Amikacin (AM)	rrs	a1401g, g1484t		- 074 - 104	a1338c
Kanamycin (KM)	eis rrs	c-14t, g-10a a514c [#] , a 1401g , c1402t, g1484t		g-37t, c-12t	a13360
	rrs+eis	rrs c517t [#] + eis g-37t			
Capreomycin (CM)	rrs	a1401g, c1402t, g1484t			c517t D149H
Streptomucin (S)	tlyA rpsL	N236K, pooled frameshifts and premature stop codons K43R, K43T, K88Q, K88R, T401			D149H
Streptomycin (S)	rrs	a1401g [#] , a514c , a514t, c462t, c513t, c517t			
	gidB		E92D #-1		L16R, V110G, poo frameshifts an premature stop co
Second-line (group C)					
Ethionamide and prothionamide (ETO/PTO)	inhA ethA	c-15t+I194T, c-15t+S49A	c-15t		Q347Stop
Second-line (group D)					
Pyrazinamide (Z)	pncA	 t-12c, a-11g, t-7c, A3E, L4S, I6T, V7G, D8E, D8G, D8N, Q10P, D12A, D12N, C14R, G17D, L19P, G24D, Y34D, A46V, K48T, D496, D49N, H51D, H51R, P54S, H57D¹¹, H57P, H57R, H57Y, S59P, P62L, P62D, D43G, S66P, S67P, W68C, W68R, H71D, H71Q, H71Y, C72R, T76P, H82R, L85P, L85R, F94L, F94S, K96N, K96R, G97C, G97D, G975, Y103H, S104R, G108R, L116P, L116R, L120P, R123P, V125F, V125G, V128G, G132A, G132D, G132S, A134V, T135N, T135P, H137P, C138Y, V139G, V139L, Q141P, T142A, T142K, T142M, indel - R148ins (inframe), L151S, V155G, L159P, T160P, G162D, T168P, L172P, M175T, M175V, V180F, V180G, Pooled frameshifts and premature stop codons 	 V76, 010R, P54L, W686, K96E, K96T, A171E, M1751 	D126, F58L, H71R, 1133T, V139A	indel - c-125del, L35R, T47A, 16L, 1 T114M

TABLE 3 List of confidence-graded mutations associated with phenotypic drug resistance as determined by best confidence values

The table includes all the mutations graded according to the proposed standardised approach for providing confidence levels to their association with phenotypic drug resistance. Standard type represents associations based on nominal p-values [putative]; bold type represents associations based on corrected p-values. The rationale for pooling insertions/deletions and nonsense mutations can be found in online supplementary material 5. Tables 1 and 2 provide the details of the data included in the grading system and the definitions for the confidence categories. Indeterminate mutations were not included in the table and can be found in online supplementary material 8. Drugs were classified based on the updated guidelines for short and individualised regimens [4]. ": six associations were not considered for further analysis as there was probably no causative relationship between these genetic changes and the resistance to the antibiotic in question; 1: genotype-specific mutation.


ARTICLE

DOI: 10.1038/s41467-017-00721-2

A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide

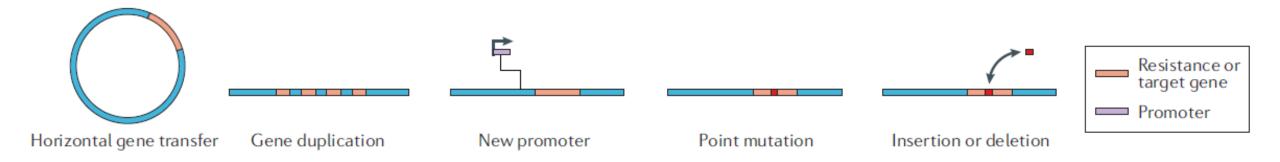
Adam N. Yadon^{1,2}, Kashmeel Maharaj², John H. Adamson², Yi-Pin Lai³, James C. Sacchettini⁴, Thomas R. Ioerger³, Eric J. Rubin¹ & Alexander S. Pym²

TB Mutational Resistance

Fig. 4 Pyrazinamide resistant amino acid substitutions occur throughout PncA and are enriched for non-conserved amino acid substitutions. **a** The proportion (%) of non-synonymous amino acid substitutions represented in the *pncA* library that were pyrazinamide resistant at each PncA amino acid. Amino acids corresponding to the catalytic triad are marked with a *circle*. Amino acids responsible for iron coordination are marked with a *triangle*. **b** Percentage (%) of non-conserved (*black*) and conserved (*brown*) pyrazinamide resistant amino acid substitutions. **c** Percentage (%) of non-conserved (*black*) and conserved (*black*) and conserved

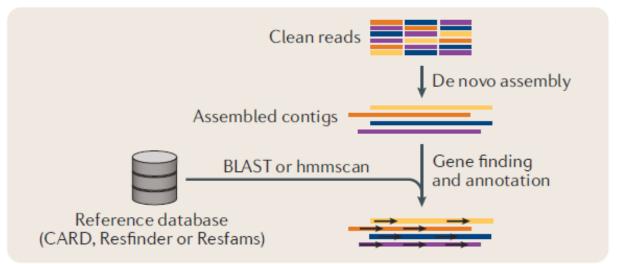
TB Mutational Resistance

- Very active area of research
- Databases currently being curated
- Potential for regional differences in curated databases
- Often data will be used for patient care, thus there is a lot of recalcitrance in sharing workflows until there is greater confidence in results



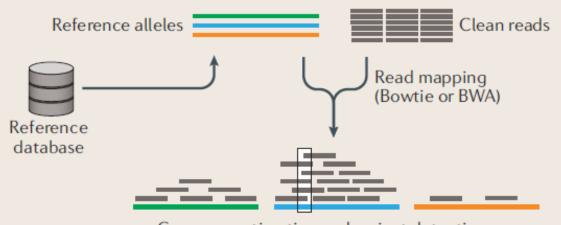
Take Away Messages

- Well curated databases of both genes and mutations are essential for effective AMR detection.
- Mutational resistance is often species specific.
- Resources are constantly being updated as new genomic and phenotypic data is curated.
- Collaboration between bioinformaticists, microbiologists, and epidemiologists are essential for fully understanding AMR.
- Although not discussed in this webinar, specificity and sensitivity of AMR detection using NGS data is often very high, comparable or better than many other molecular diagnostics for AMR detection (see references).



Questions?

Reads vs Contigs


Assembly-based approach:

- Computationally expensive and time consuming, particularly in resistome profiling of large complex communities
- Identification of both known and novel resistance genes that share low similarity with reference database; however, requires high genome coverage
- Genomic context such as regulatory and mobile element sequences can be captured

Boolchandani, M., D'Souza, A.W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20, 356–370 (2019). https://doi.org/10.1038/s41576-019-0108-4

Reads vs Contigs

Coverage estimation and variant detection

Read-based approach:

- Fast and less computationally demanding, enabling resistome analysis of large data sets
- Identification of resistance genes is dependent on completeness of the reference database of organisms under analysis
- Nearby genes and genomic context are missing; may lead to false positives due to spurious mapping

Boolchandani, M., D'Souza, A.W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 20, 356–370 (2019). https://doi.org/10.1038/s41576-019-0108-4